```
    GB ENERGY PARK, LLC
```

 PUBLIC MEETING
 In Re: Gordon Butte Closed Loop)
 Pumped Storage Hydro Project) FERC No. P-13642

Taken at: 204 3rd Street
Harlowton, Montana
August 22, 2013, 9:58 a.m.

TRANSCRIPT OF PUBLIC MEETING

```
Reported by David E. Hix, ASCR, for Agamenoni & Frank Court
Reporting, P.O. Box 3008, Great Falls, Montana 59403-3008, (406) 727-7272, Professional Freelance Court Reporter and Notary Public for the State of Montana, residing in Missoula, Montana.
```

A P P E A R A N C E S
CARL BORGQUIST, Absaroka Energy, LLC, 209 South Willson Avenue, Bozeman, Montana 59771.

MARTIN J. WEBER, P.E., Stanley Consultants, Inc., 5775 Wayzata Boulevard, Suite 300, Minneapolis, Minnesota 55416.

RHETT HURLESS, Absaroka Energy, LLC, 209 South Willson Avenue, Bozeman, Montana 59771. STEVE PADULA, McMillen, LLC, 500 Broadway Street, Suite 606, Vancouver, Washington 98660.

WENDY E. ROBERTS, Garcia and Associates, 1716 West Main Street, Suite 8-F, Bozeman, Montana 59715.

PAM SPINELLI, Garcia and Associates, 1716 West Main Street, Suite 8-F, Bozeman, Montana 59715.

ALSO PRESENT: PAUL BOCKUS, ELI BAILEY, KELCIE
NICE

the lower reservoir. And if you look -- when you come up here, if you look, you can see sort of a dotted line, which is an indication of where the penstock will be. And then the powerhouse at this point is designed to sit at the back of the lower reservoir. That penstock -excuse me -- that powerhouse will be about 100-plus-feet deep, and will accommodate the pump turbine generator set that you see in the blowup over on the left there (indicating).

If you take a look at this when you come up here, you can see the human figure right here (indicating). So we've got quite a bit of equipment stacked on a single shaft. I'll talk about the capabilities of the equipment in a minute. But the top of the powerhouse will be open, though, it will be buried in the ground. This will be to facilitate cranes, and whatnot, to be able to access the equipment, pull the equipment apart if there's any problem with it, and put it back together. We'll have four shafts, so four 100-unit machines that look, in fact, similar to like that over there (indicating).

The material from the removal of the tunnel for the penstock development will be used principally to build the rolled and compacted concrete embankments at the top and the bottom. And let me refer you now to

8
this visual aid. This was put together by Garcia and Associates and is to scale. So that lower reservoir will sit against the toe of that alluvial fan on Gordon Butte and be excavated back and a roller compacted concrete embankment extended in order to create a reservoir that will hold about 4,000 acre-feet -- 4,050 acre-feet of water. So, again, we'll remove the material from the power station dig, and from the penstock development, to use to create this roller compacted embankment.

I've got Marty here. I'm going to ask Marty to just, if you would, take a few minutes and explain what that embankment -- what the creation of that embankment looks like from a structural engineering standpoint.

MR. WEBER: Okay. The upper reservoir, the geology up there is basically about -- on top of the butte is basically about four feet of overburden, and under that is very hard rock, bedrock. So the idea is to dig down into that upper reservoir area, remove that rock, process the rock and create this roller compacted concrete embankment that will form the upper reservoir.

Roller compacted concrete is basically a
low-cement, low-water mixture of concrete that is very commonly used for embankments like this. It's a proven
technology since the '60s, since it first started. So
it forms a very solid embankment. So what we're going to do is take advantage of that material that's available up there and use it to construct that upper embankment.

The lower reservoirs, depending on the material that's available there, that could be roller compacted concrete, or it could be an earthen fill, or a combination of that. And, again, embankments are dams, are commonly made of, you know, concrete and dirt. You know, what ever material is available you can make a competent and safe dam or embankment out of that material.

MR. BORGQUIST: Thanks, Marty. Let me talk a minute about the closed nature of this system. So we're creating these two reservoirs, brand new reservoirs. They'll be lined to prevent seepage. We will do a fill in one reservoir, which will comprise the initial fill. And the purpose of the equipment and the purpose of the plant, in general, is to move water back and forth between the two reservoirs. Obviously, if we were to move all that water to the upper reservoir, we'd have quite a lot of energy potential stored in that capability of releasing that back and running it as generation.

10

All of you know that our grid is now populated in terms of energy production by a disparate number of generation resources: We have coal, gas, renewables. All of this is creating a lot of stress on that operation of the grid. And so around the world, not necessarily in the U.S. -- there isn't a power plant like this in the U.S. There are in other parts of the world. These facilities are used as a shock absorber and essentially by utilities and other users. Water gets moved back and forth hundreds of times a day in order to keep the grid healthy, manage the transmission assets, and make sure that the lights don't flicker and stay on and that system operates reliably. So that's the purpose of building a facility like this.

Once we get the facility built, I think you'd be hard pressed -- and, again, take a look at the mock-up. Please do when you come up after the meeting -- be hard pressed to understand what is buried and all the concrete and equipment that's buried in the ground. From an electrical interconnection standpoint, this is an overview of the project boundaries. We will be moving that energy back to the 500 kV and interconnecting with the 500 kV , which will give us access to sort of the larger aspects of the northwest -- not NorthWestern -- but northwest grid.

The panel of experts, did I miss anything on sort of the overall guts and construction of the project?

Any questions? And I'll ask you, by the way, because we have to record this for the purposes of FERC, if you'd stand up and tell us your name so the court reporter can take your name down and who you represent. I'd appreciate it. Thank you. Yes, in the back of the room, you had a question?

MR. WALDNER: I have a question. Where is the water coming from for this project?

MR. BORGQUIST: That's a very good question. And we are in the process right now of talking to water user associations, the State, and stakeholders in developing a plan for that initial fill and that operation. At this point, we haven't finalized anything, and I don't want to speculate about exactly how that plan will come together. If that's something you're concerned about, please let us know. We'll keep you informed as we start and continue to talk about that and get ready for that initial fill.

MR. WALDNER: And another question is how is it going to affect irrigation systems?

MR. BORGQUIST: Well, again, we're talking to the water users in the system. We want to develop a plan that doesn't have any impact on the existing use of

12

that system. Again, I don't want to speculate about what that would be right now. But we'll continue to work on that, and talk to folks, like yourself, and make sure we come up with a competent and responsible plan for the initial fill.

MR. WALDNER: Thomas Waldner, W-a-I-d-n-e-r.
MR. BORGQUIST: Thank you, sir. Yes, sir.
MR. TOLIVAISA: My name is Peter Tolivaisa.
I own Cottonwood Cabinets, LLC, 2262 State Highway 294.
What parts of the world are these systems used in? You said they were used in other parts of the world. What are they?

MR. BORGQUIST: Well, I've actually stood in several of these in Europe, Germany in particular. But they are very prevalent in Europe. And Europe has, even more than we have, interconnected and is using a lot more renewables, a lot more variable generation in their system, and these plants are being used by the utilities to keep that system healthy. Again, think of it like a shock absorber, and there's constant movement of water to create -- either take electricity off the system if there's too much, or excess energy, or put it back in when there's a need to keep the system back up.

MR. TOLIVAISA: Thank you, sir.
MR. BORGQUIST: Any other questions about
sort of the project characteristics?
Okay, so I want to talk about the site a little bit. We've got the mock-up here that shows the land use, the landowners around the project boundary. This project will be built on 71 Ranch, LP. In fact, the entire project and the interconnection back to the 500 kV is on this single private landowner's land. That land is being used for ranching. We've also now -- many of you know there's a 10 MW wind farm on the east side of the butte. A road has been put in to access that wind farm.

Again, the site has got a unique feature, and that unique feature is that we've got this 1,000 feet of elevation difference and a very precipitous drop between the upper and lower reservoir. The tunneling, as you might imagine, it's a bore, an 18 -foot hole in the ground. It's expensive. And the closer you can stack those two reservoirs together, the more cost-effective you can make the project. And that's one of the characteristics of this geologic feature that helps us have a plan, and have a project that's economically viable.

We've had environmentalists and others out to look at the project site and determine if we're going to affect any critical habitat or any other issues.

That information is in our preliminary application, which you can find on the FERC website. We've also got hard copies up here (indicating). Garcia and Associates took a look at that for us. And, Pam, I'd ask you to just, at this point, comment on what you've seen in your studies of the site in terms of its environmental impacts.

MS. SPINELLI: Sure. Now, what we did is, we did a fatal flaw analysis just to see if there was anything that was, you know, you're not going to be able to build here. And we looked at habitat and agricultural use: Prime farmland. We looked at wildlife habitat and the possibility of sensitive or listed species. We looked at aquatic habitat, and we also did, through a subcontractor, a Phase 1 assessment of hazardous materials, and cultural resources as well. And we didn't find -- we didn't do sensitive ground studies. Again, it was just kind of a broad overview fatal flaw analysis. We did not find anything that was a huge red flag to this project.

MR. BORGQUIST: Thanks. In terms of the capability of the equipment, it appears -- really, to get more specifically to your question -- pumped storage hydro has been around for 100 years. But over time, the equipment has evolved to allow -- and, again, take a
look at the mock-up -- the stacking of all of that on a single shaft that runs -- all of it runs in the same direction. So when you think of pumped storage that's been built in the United States in the past, that pumped storage was always -- or more often tied to a base load type plant: Coal or often nuclear.

So what they do with that pumped storage plant, they would pump water all night, then they would release water during the day to create generation at peak loads. They would have to actually dewater the machine and all of the equipment in order to make the switch from pumping to generating.

The equipment we're proposing to build is fast-acting pumped storage. So we can actually pump and generate at the same time. Now, that's not efficient in terms of the use of electricity to move the water back and forth. But the purpose of the plant is for the utilities, who are the customers of this, to be able to call in for a mode that says generate pumped energy and do this hundreds of times a day.

So we'll have two machines in our proposed set that can run at viable speeds, which is another unique feature of the newer equipment. You can idle them and then start increasing the speeds and pump more to generate electricity, run the turbine more and create

16
electricity. We'll also have two machines that have the ability to pump and generate at the same time. Again, the purpose is to move water back and forth as needed in order to create a shock absorber for the system.

Did I miss anything, panel, on kind of the characteristics of the site or the capability of the equipment? Any questions from anybody about --

MR. TOLIVAISA: Peter Tolivaisa, 2262 State Highway 294, representing Cottonwood Cabinets, LLC. What is a fatal flaw study, Ms. Spinelli?

MS. SPINELLI: What is a fatal flaw study?
MR. TOLIVAISA: Yes, ma'am. And was my property included in that study?

MS. SPINELLI: No, your property was not included. We looked within that study down grade from what's identified on there. And, you know, honestly, I'm not sure if it was included in the hazard assessment or not. If it was, you would have been contacted and interviewed. But as far as for each of those resource areas, we defined what we would consider, and is generally considered from a regulatory standpoint, as a fatal flaw, something that would be very, very difficult to overcome from a permitting standpoint. And we looked to see if there was anything like that there in this area.

MR. TOLIVAISA: So I'm under that little corner of the project.

MS. SPINELLI: Oh, you're in the project area? Then it was included. I'm not sure exactly where that is.

MR. TOLIVAISA: I'd like to see the results of that study, please. Another question, who are going to be the final-use customers of the power generated from this? Are they going to be local, or is the final power generated going to go to other places?

MR. BORGQUIST: We don't know who that is going to be at this point, so we can't answer that question. I think it's likely that it would be potential users in the northwestern part of the country, utilities and others that need the capability to either take or produce electricity or take or produce energy quickly.

MR. TOLIVAISA: Will any of the people in the local areas be able to use this power, or is it all going to be moved someplace else?

MR. BORGQUIST: Well, the power will go into the grid, which you're hooked into. And so it will be a part of the WECC grid. So, yes, in a way, you'll be connected to it by being connected to the grid.

MR. TOLIVAISA: And where is the excavated
material for these two ponds and project going to be moved, stored? You're talking about a big hole there. Where is the excavated material going to go?

MR. BORGQUIST: That's a good question. Again, the material from developing the penstock, which is those two big tunnels in the ground, those will go directly into creating the embankments to form the two reservoirs. I can't say that will be exactly enough, or if we'll have excess. But the idea is to first take that material from the excavation and use it to actually construct those reservoirs.

MR. TOLIVAISA: So the reservoirs are going above grade, not below grade?

MR. BORGQUIST: The lower one will be dug in in order to create a little bit more head or space between the upper and lower reservoir. But that mock-up that you see -- and, again, I would encourage you to take a look at it -- that's modeled to scale in terms of the size for the -- what would be seen from essentially your side of the property looking east.

MR. TOLIVAISA: Thank you, sir.
MR. BORGQUIST: Yes, Steve. Please come to the podium so we get you picked up on the mic.

MR. PADULA: I just want to answer the question in terms of the fatal flaw information. That
was attached to the preapplication document. And that is on the CDs that we have. So there is a CD here today, if you haven't had a chance to look at that preapplication document. And there's several attached reports that were done, so all of that information is available.

MR. BORGQUIST: Thank you. We definitely have the CDs. You can get it electronically online, at our site or at FERC's. And we have hard copies if you want to look at that. Okay, so I want to talk a minute -- oh, sorry.

MR. PIERCE: My name is Doug Pierce. I'm representing the Crazy M Ranch. I've got two questions.

MR. BORGQUIST: Yes, sir.
MR. PIERCE: Is each reservoir going to hold 4,050 acre-feet?

MR. BORGQUIST: No, just one.
MR. PIERCE: That was not what you had in the initial publications. And, also, I can count the number of local people here on one hand. Why was it not publicized in a local newspaper? It was not in the Harlowton Times or the Meagher County Newspaper. The only way I found out about it was the -- where you guys invited the city council to come here.

MR. BORGQUIST: Well, we put it in the
20
Billings paper thinking that that would have the largest impact, and that most people in this area would pick up the Billings paper. So that was the decision we made.
We tried very hard to go out and find as many stakeholders. In fact, we have a list -- we'd be happy to let you look at it after the meeting -- of folks that we've actively gone out and tried to invite in this process.

To get back to your question about the water, I'm not sure how that confusion occurred, but the whole point of this is to have only one reservoir filled. We can't have both filled, because we need to be able to move the water up and then release it back down. Obviously, if the upper is filled, the whole point of the project goes away. So I can say, definitively, we're going to fill one reservoir. We're going to fill the lower reservoir, and the water will move back and forth between the two.

MR. PIERCE: Thank you.
MR. BORGQUIST: Yes.
MS. DESCHENE: I'm Kimberly Deschene, and I'm the county attorney of Meagher County. And I guess I have a question. I knew about this meeting because of someone at work helping -- doing some legal work for this project. But otherwise, I didn't know about it
through the Billings Gazette. I'm wondering why this isn't being held in Meagher County where the -- the whole project seems to be occurring in Meagher County. So why are we --

MR. BORGQUIST: Well, we made a tactical decision that this was the closest sort of locale, more widely populated locale and a central location to hold the meeting. Again, I made the decision that Billings was the closest, largest paper. And then, again, I'd be happy to give you the list. We tried very hard to go out and invite as many people as we could think of to come in.

I will tell you this, we are happy -- for any of you in the audience -- happy to meet any of you, your neighbors, anybody else that's interested in the project and give them a brief of what's going on, and a special one. So don't feel like this is the last shot. We are going to make ourselves available to see anybody that wants to talk to us about the project or how it's coming together.

MS. DESCHENE: I guess the other thing I'm interested in is how will it benefit the community? Like Meagher County, how will it affect the locals? We have had this -- Errol Galt came in, I guess, a year ago and asked for a tax exemption, like a large one, like a 22
\$5 million tax exemption, which I think they -- the commissioners gave. Again, I don't have the specifics right about that. But everyone wanted that to happen. They think it's great energy and that it's good for the world. But how does it benefit the local community?

MR. BORGQUIST: As it turns out, I'm just about to talk about that section. And I want to encourage you -- let me -- I'll do that, and then if I didn't answer a question, please stand up and ask again. Yes, sir.

JOEL WALDNER: Joel Waldner.
MR. BORGQUIST: Hold on, sir. I didn't catch your name.

JOEL WALDNER: Joel Waldner. Let's say you've got the 4,050 acre-feet in the reservoir. You've got evaporation. You've got water laws. How is that going to be maintained?

MR. BORGQUIST: Again, today, I don't want to speak specifically about the water issue, because we're trying to develop that plan. But, obviously, we're going to try to find within the system -- we can't create new water out of the system. We'll have to purchase water within the system and within the buckets that are in the system, both for the initial fill and to deal with any evaporation. Again, I just don't want to
go off and speculate. If that's an issue that you're interested in, we will make sure -- please pull one of us aside, and we'll make sure that you are getting information as we're working on that plan.

But we're engaged with the water users right now and the stakeholders and trying to listen to everybody's concerns and develop a plan that is the movie effective that we can. Thank you.

So from a socioeconomic perspective, this project, from a capital -- total capital cost is about $\$ 800$ million. Which, I can't tell you exactly what the tax revenue will be from that, but let's just say the tax revenue is going to be substantial for Meagher County, it will. And we also will go through about a two-and-a-half-year period to build the project. There will be about 300 permanent workers necessary to accomplish that.

Then once the project is built, we would estimate between 12 and 24 permanent staff to run the facility, and those will be very high-paying jobs. Throughout the course of building this, and throughout the course of running the facility in the future, there's going to be a host of economic activity that comes out of operating an $\$ 800$ million facility. And I think that that will be much to the benefit of Meagher

24

County and Montana.
MS. DESCHENE: Do you expect these 300 workers -- when do you expect them to be in place in Meagher County? And will they live there, or will they be these sort of transient, man-camp kind of workers?

MR. BORGQUIST: That's a good question. We've got, by the way, a certain time line. We're expecting the licensing process to take between two and a half to three years. So we're still two and a half to three years away from the point where we would start construction.

I think in terms of housing and dealing with the effects of the construction, you know, we're Montanans. I'm proud of this project, and we want to be here. We are going to work with the local community to figure out how to deal with the housing situation and any reasonable problems that come out of operating and constructing the facility. And I don't want to presume what those would be. I think the local stakeholders, politicians, jurisdictions, we will be engaging with to try to develop solutions that they are happy with and makes sense to them in order to deal with those problems.

Any other questions?
Okay, so this meeting is part of the
requirements that we have with FERC. It starts at the beginning of a 60-day period where we will ask the agencies, state agencies, Native American tribes, other stakeholders and individuals to come and let us know what you're concerned about and identify areas of information and studies that we need to accomplish in order to put together a competent licensing package.

We will then take those comments and requests and start putting together draft study plans, and plans to produce the information. If you're a stakeholder that's been in contact with us over that, we will be back with you to discuss that and make sure that the study plans look right. I think the point of this is we want to engage with you and have that dialogue and start to work cooperatively to put that information together to complete the license application.

And I'm just going to turn for a minute to Steve, if you want to say -- any other thing you want to say about that process?

MR. PADULA: Ultimately, this licensing process does have to end up on paper. I mean, you end up with a final license application with all the supporting information. I think the intent of the Absaroka Group, though, is to do more than that. It's to engage with folks. We want to have the dialogue. We 26
want to talk with you folks and hear really what your concerns and interests are so that by the time we dedicate this to paper, we really know that we've fully addressed your issues and we're on the same page in terms of your concerns, what information needs to be developed to address those concerns, and, ultimately, does support our application to the FERC.

And their job is to look at the work we've done and determine whether we have adequately addressed your concerns, and we have a complete plan for development, as well as the dealing with any potential effects of the project. They have to ultimately take our project and put it through the NEPA process, the National Environmental Policy Act process. So they'll be looking at this and doing their own independent environmental assessment based on the information we've generated.

We want to do this once. We want to do it right and complete the first time. I think it's to nobody's advantage that we end up with incomplete information, and then folks asking us later in time, why didn't you address my concerns? So, again, I think there's going to be a lot of effort on the front end to make sure we are talking with all the right folks, so we know what your concerns are and we can address them.

If anybody has got any specific questions about the FERC process, I'd be happy to address those.

MR. FOX: Jeff Fox, with the Renewable Northwest Project. Is FERC, then, the lead agency on the NEPA process?

MR. PADULA: Yes, FERC is the lead under the Federal Power Act. FERC is the lead agency on non-federal hydroelectric development. So that's where we fall as a private entity proposing a hydroelectric project.

MR. FOX: Thank you.
MR. BORGQUIST: So on your agenda, No. 7, how do you get involved? It is our intention to publish everything that we're doing on our website. We can get that address for you. Just see one of us for that. We will also, please, answer and respond to an old-fashioned telephone. So if you have any questions or anything comes up, please, track us down and find us. Again, if there's any groups or anybody here that you think we ought to talk to or engage with, I want to encourage you to pull one of us aside and we're going to be very responsive to that and go out and affirmatively meet with folks to have dialogue about the project.

We would like -- again, what Steve said, I want to reiterate. Our whole approach to this thing is

28
we'd like to do it right the first time. We encourage any of you that are concerned about anything to track us down so we can assess and deal with any of those concerns early. We'd like to go through one process of pulling together the information, providing the studies, and getting through that -- through this. That is an effective way for us to prosecute the development of the project. Some of these projects have difficulty because they seem to go on, and on, and then a new problem arises. To the extent that we can, we want to try to identify those now and get after them. So if there's anything, please see us and we'll start to dialogue with you about that issue.

Again, we have a site visit opportunity today at the top of the butte. If you come up, we've staked out the upper reservoir. You sort of get the view of the drop. We've cleared a little area so you can see from the top to the bottom where the project will be located. We are going to be available here to answer questions. Again, you can ask any one of us. Pull us aside, myself, Rhett, Paul and Eli in particular, if you've got any questions, you can track us down.

I really want to thank you for coming to the meeting. And thanks in advance for working with us and
having the conversation with us to help do this -prosecute this project in a responsible fashion.

I'm going to ask the panel if there's anything I've missed, anything that you think we need to talk about before I close the official meeting?

MR. PADULA: There's an information sheet which will help folks in terms of getting us information.

MR. BORGQUIST: These are in terms of finding us, consulting with us. These are on the back table. Please pick one up. Is there anything else? All right, anybody out there at this point have any questions for us before we kind of shut the official meeting down? Yes, sir.

MR. TOLIVAISA: Peter Tolivaisa, 2262 State
Highway 294. Cottonwood Creek is currently dry. I would like to know if, you know, the water that is used for this project will eliminate Cottonwood Creek permanently? Or will the water be allowed to flow through? Because right now the 71 is just irrigating. Cottonwood Creek is dry. It is a pile of rocks. Now, with this added appropriation, will the water still flow? Water rights, I have water rights. They're very old. But appropriations for flow, will there be any flow through the project down to Cottonwood Creek?

30

the size of this room and is five miles away from the site, instead of 30.

MR. BORGQUIST: Thank you for that. We'll take that under advisement as well.

MR. TOLIVAISA: Thank you, sir.
MR. BORGQUIST: All right, thank you all very much. Again, please track us down. We're going to be here for the next hour, hour and a half to answer your questions. Thanks very much.
(Thereupon, the public meeting concluded a 10:40 a.m.)

STATE OF MONTANA)
: SS.
County of Missoula)
I, David E. Hix, ASCR, Freelance Court Reporter and Notary Public for the State of Montana, residing in Missoula, Montana, do hereby certify:

That I was duly authorized to and did report the testimony and evidence in this cause;

That the foregoing pages of this public meeting constitute a true and accurate transcription of my stenotype notes.

I further certify that I am not an attorney nor counsel of any of the parties; nor a relative or employee of any attorney or counsel connected with the action, nor financially interested in the action.

IN WITNESS WHEREOF, I have hereunto set my hand and seal on this the 28th day of August, 2013.

David E. Hix, ASCR
Freelance Court Reporter, Notary Public, State of Montana Residing in Missoula, Montana. My Commission expires: August 1, 2017

expect [2] -	feature [4]	flag [1] -	G	ground [6]	4:6, 4:21,	tric [2] -	11:20, 12:5,
24:2, 24:3	- 13:12,	14:20		- 6:21, 7:16,	29:1, 29:7	27:8, 27:9	19:19,
expecting	13:13,	flaw [6] -	$\begin{gathered} \text { Galt [1] - } \\ 21: 24 \end{gathered}$	10:19,	helping [2]		22:24
[1] - 24:8	13:20,	14:9, 14:19,	21:24	13:17,	-5:12,		instead [1]
expensive	15:23	16:10,	$\begin{aligned} & \text { Garcia }[5] \text { - } \\ & \text { 2:7. } 2: 9 . \end{aligned}$	$14: 17,18: 6$	$20: 24$		$-31: 2$
[1] - 13:17	features	$16: 11$	2:7, 2:9,	Group [1] -	helps [1] -	$8: 19,18: 9$	intent [1] -
experts [2]	[1] - 5:24	16:22,	$\begin{aligned} & 5: 16,8: 1 \\ & 14: 3 \end{aligned}$	25:24	13:21	identified	$25: 23$
- $4: 7,11: 1$	federal [1]	18:25	gas [1]	groups [1]	hereby [1] -32.5	[1] - 16:16	intention
expires [1] $-32 \cdot 17$	- 27:8 Federal [2]	$\begin{aligned} & \text { flicker [1] - } \\ & \text { 10:12 } \end{aligned}$	10:3	- 27:19	$-32: 5$	identify [2]	[1] - 27:13
explain [2]	$\begin{gathered} \text { Federal [2] } \\ -5: 12,27: 7 \end{gathered}$	10:12 flow [4]	gathering	$\begin{aligned} & \text { guess [3]- } \\ & \text { 20:22, } \end{aligned}$	$[1]-32: 12$	- 25:5,	interconn ected [1] -
- 4:6, 8:12	feet [9] -	29:19,	[1] - 5:19	21:21,	high [1] -		12:16
extended	6:16, 6:21,	29:23	Gazette [1]	21:24	23:20		interconn
[2]-6:25,	6:22, 8:6,	29:24	- 21:1	guts [1] -	high-	15:23 imagine [1]	ecting [1] -
8:5	8:7, 8:18,	29:25	GB [1] - 1:1	11:2	paying [1] -	imagine [1]	10:23
extent [1] -	13:14,	folks [9]-	general [1]	guys [1] -	23:20	impact [2]	interconn
28:10	19:16,	5:1, 12:3,	- 9:20	19:23	Highway	$-11: 25$	ection [2] -
F	FERC [10] - $1 \cdot 35 \cdot 13$	$\begin{aligned} & 26: 1,26: 21, \\ & 26: 24, \end{aligned}$	[1] - 16:21 generate	H	$16: 9,29: 16$	$\begin{aligned} & \text { 20:2 } \\ & \text { impacts [2] } \end{aligned}$	$\begin{gathered} \text { 10:20, 13:6 } \\ \text { interested } \end{gathered}$
facilitate	$11: 5,14: 2$	$27: 23,29: 7$	[4] - 15:15,	habitat [4]		- 5:17, 14:7	[4]-21:15,
[1] - 7:16	$25: 1,26: 7$	foregoing	15:19,	- 13:25,	[1] - 30:5 Hix [3] -	IN [1] -	$\begin{aligned} & 21: 22,23: 2, \\ & 32: 11 \end{aligned}$
facilities $[1]-10: 8$	27:2, 27:4,	$[1]-32: 7$	15:25, 16:2	$\begin{aligned} & 14: 11 \\ & 14: 13 \end{aligned}$	1:17, 32:4,	$\begin{aligned} & 32: 12 \\ & \text { Inc [1] - 2:3 } \end{aligned}$	interests
facility [6] -	27:6, 27:7	$\begin{array}{r} \text { form [2] - } \\ 8: 22,18: 7 \end{array}$	generated [3] - 17:8,	$14: 14$	$32: 15$	included	[1] - 26:2
10:14,	- 19:9	forms [1] -	17:10,	half [4]-	$\begin{array}{r} \text { hold [3] - } \\ 8: 6,19: 15 . \end{array}$	[4]-16:13,	$\begin{aligned} & \text { intern [1] - } \\ & 5: 8 \end{aligned}$
10:15,	few [1] -	9:2	26:17	23:15, 24:9,	$21: 7$	16:15,	5:8
23:20,	8:12	forth [6]	generatin	31:8	Hold [1] -	16:17, 17:4	$\text { nal }[1]-5: 22$
$23: 22$, $23: 24$,	figure [2] -	6:23, 9:21,	g [1] - 15:12	$\begin{gathered} \text { hand [2] - } \\ \text { 19:20. } \end{gathered}$	22:12	incomplet	interview
$\begin{aligned} & 23: 24 \\ & 24: 18 \end{aligned}$	7:11, 24:16	10:10,	generatio	$\begin{aligned} & 19: 20, \\ & 32: 12 \end{aligned}$	hole [2] -	e [1] - 26:20 increasin	ed [1] -
fact [4] -	fill [9] - 9:8,	15:17, 16:3,	$\mathbf{n} \text { [4] - 9:25, }$	happy [6] -	13:16, 18:2	$[1]-15: 24$	16:19
7:20, 13:5,	9:		$15: 9$	20:5, 21:10,	honestly	independ	introduce
20:5, 30:7		forw		21:13,	[1] - 16:16	ent 1	[2] - 4:23,
fall [1] -	11:20, 12		-7	21:14,	hooked [1]	26:15	4:25
27:9			eo	24:21, 27:2	- 17:22	indicating	invite [2] -
Falls [1] -	$22: 24$	$8: 18$	[1] - 13:20	hard [8] -) $[4]-7: 9$,	$20: 7,21: 11$
1:17	filled [3] -	$\text { FOX }[2]-$	geology	4:18, 8:19,	23:23	7:12, 7:21,	invited [1]
fan [1]-8:3	20:12,	$27: 3,27: 11$	$[1]-8: 17$	10:16,		14:3	- 19:24
far [1] -	$20: 14$	Fox [1] -	Germany	10:18, 14:3,	house [1] -	indication	involved
16:19	final [3] -	$27: 3$	[1] - 12:14	19:9, 20:4,	$4: 15$	[1]-7:3	$27: 13$
farm [2]-1	17:8, 17:9,	FOX.........	Gordon [7]	21:10	housing	individual	irrigating
$13: 9,13: 11$	25:22		- 1:2, 4:3,		[2]-24:12,	ly [1] - 4:10	[1] - 29:20
[1] - 14:12	final-use		4:15, 5:3,	19:22	24:16	individual	irrigation
fashion [1]	[1] - 17:8 finalized	$27 \text { [1] - 3:7 }$	$\begin{aligned} & 6: 13,6: 14 \\ & 8: 3 \end{aligned}$	hazard [1]	huge [1] -	$\begin{aligned} & \mathbf{s}[1]-25: 4 \\ & \text { informati } \end{aligned}$	[1] - 11:22
- 29:2	[1] - 11:15	$\begin{aligned} & \text { Frank [1] - } \\ & 1: 17 \end{aligned}$	grade [3] -	- 16:17	14:20	on [15] -	issue [5] -
fashioned	financiall	1:1	16:15,	hazardou	-	5:19, 14:1,	22:19, 23:1,
[1] - 27:17	$\mathbf{y}[1]-32: 11$	[3] - 1:18,	18:13	s [1] - 14:16	hundre	18:25, 19:5,	28:13, 30:3, $30: 11$
fast [1] -	finished	$32: 4,32: 16$	great [1] -	head [1] -	[2] - 10:10,	23:4, 25:6,	issues [2] -
15:14	[2] - 4:8,	front [3] -	22:4	18:15	$15: 20$	$25: 10$	$13: 25,26: 4$
fast-	30:13	$5: 5,5: 10$	Great [1] -	healthy [2]	HURLESS	25:15,	
$\begin{aligned} & \text { acting [1] - } \\ & 15: 14 \end{aligned}$	$\begin{aligned} & \text { firm [1] - } \\ & 5: 23 \end{aligned}$	26:23	$\begin{aligned} & \text { 1:17 } \\ & \text { grid }[7] \end{aligned}$	$12: 19$	[1] - 2:5	$\begin{aligned} & 25: 23,26: 5, \\ & 26: 16, \end{aligned}$	J
fatal [6] -	first [4]	$26: 3,30: 19$	$10: 1,10: 5$	hear [1] -		26:21, 28:5,	JEFF [1] -
14:9, 14:19,	9:1, 18:9,	futur	10:11,	26:		29:6, 29:8	3:7
16:10,	$26: 19,28: 1$	23:22,	10:25,	Heidi [1] -	$\begin{gathered} H y \\ 1: 3 \end{gathered}$	informed	Jeff [1] -
16:11,	fit [1] - 30:5	$30: 24$	17:22,	5:11		[1] - 11:19	27:3
16:22,	five [1] -		17:23,	held [2] -	$14: 24$	initial [6] -	job [1] -
18:25	$31: 1$			$21: 2,30: 24$	hydroelec	9:19, 11:14,	26:8

9:17, 9:21,	23:22	[3] -	30:14	32:16	suggest	n [1] - 31:10	28:15,
13:18, 18:8,	runs [2] -	7:13,	ds [2]	state [1] -	[1]	've [8:18
18:11	15:2	15:2	- 15:22	25:3	uite [4] -	- 5:18	total [1] -
18:12 residing[2] - 1:18,		:4,	15:24 SPINELLI	$\begin{aligned} & \text { STATE } \\ & -32: 2 \end{aligned}$	$\begin{aligned} & 2: 4,2: 6, \\ & 2: 8,2: 9 \end{aligned}$	[1] - 20:1	$\begin{aligned} & \text { 23:10 } \\ & \text { track }[4] \text { - } \end{aligned}$
		$\begin{aligned} & 8: 3 \\ & \text { site }[10]- \end{aligned}$					
			[5] - 2:9	tates [1] -	Sulphur [1]	ma	27:18, 28:2,
32:4 Residing	9:12	$\begin{aligned} & 4: 16,6: 4 \\ & 13: 2,13: 12 \end{aligned}$	$\begin{aligned} & \text { 14:8, 16:11, } \\ & 16: 14,17: 3 \end{aligned}$	station [1]	support [1]	[1] - 12:6 THOMAS	TRANSC
$\begin{aligned} & {[1]-32: 17} \\ & \text { resource } \end{aligned}$	$\begin{gathered} 8: 2,18: 18 \\ \text { seal }[1]- \end{gathered}$	$\begin{aligned} & \text { 13:24, 14:6, } \\ & 16: 6,19: 9, \end{aligned}$	$\begin{aligned} & -5: 15 \\ & \text { 16:10 } \\ & \text { SPINELLI. } \end{aligned}$	stay [3] -	supportin	thousand	$1: 12$ transcript
[1]-16		28:14, 31:2		10:13, 30:9,	g [1] - 25:23	[1]-6	
resources [2] - 10:3,	$\begin{aligned} & 32: 12 \\ & \text { section [1] } \end{aligned}$	sitting [3] -		$\begin{aligned} & 30: 10 \\ & \text { steel }[1] \text { - } \end{aligned}$	Swandal	three [2] -	ion [1] - 32:8 transient
$\begin{aligned} & \text { 14:16 } \\ & \text { respect [1] } \end{aligned}$	see [12] -	$5: 6$ situation	$. .14[1]-3: 4$	6:22 stenotype	switch [1] -	Througho ut [1] - 23:21	[1] - 24:5 transmiss
	$\begin{aligned} & 7: 8,7: 11 \\ & \text { 14:9, 16:24 } \end{aligned}$	$\begin{gathered} {[1]-24: 16} \\ \text { size }[2]- \\ 18: 19,31: 1 \end{gathered}$	$\begin{aligned} & \text { Springs [1] } \\ & -30: 17 \end{aligned}$	$[1]-32: 8$	15:12	througho	$\begin{aligned} & \text { ion }[1] \text { - } \\ & 10: 11 \end{aligned}$
$\begin{aligned} & -30: 7 \\ & \text { respond } \end{aligned}$				[1] - 32:8 Steve [5] -	system	ut [1] - 23:21 Thursday	
[1] - 27:16 responsib	17:6, 18:17,		SS [1]	5:10, 5:11,	[16]-6:20		tribes [1] -
	21:18,	$\begin{array}{r} \text { 18:19, } 31: 1 \\ \text { socioeco } \end{array}$	32:	18	9:15, 10:13,	[1]-4	25:3
le [2]-12:4,	27:15	nom	13:	25:18	11:24, 12:1,	[1]	tried [3] -
$29: 2$	$28: 12$	$\begin{aligned} & \text { 23:9 } \\ & \text { solid [1] - } \end{aligned}$	stacked [1]	STEVE [2]	$12: 19$	today [5] -	$21: 10$
e [1] - 27:22	28:18	9:2 solutions	- 7:13 stacking	$\begin{array}{r} -2: 6,3: 5 \\ \text { still }[3]- \end{array}$			true [1]
resul					12:23, 16:4,	19:3, 22:18,	32:8
$\begin{aligned} & -17: 6 \\ & \text { revenue } \end{aligned}$	seepage [1] - 9:17 sense [1] -	[1] - 24:21 someone	$\begin{array}{r} {[1]-15: 1} \\ \text { staff }[1]- \end{array}$	30:12	$\begin{aligned} & 22: 21 \\ & 22: 22 \end{aligned}$	```28:15 toe [1]-8:3 together```	$\begin{aligned} & \text { try [4] - } \\ & \text { 22:21, } \\ & \text { 24:21, } \end{aligned}$
[2] - 23:12,		[1] - 20:24	23:19	stood [1] -	22:23		
$\begin{aligned} & \text { 23:13 } \\ & \text { Rhett [2] - } \end{aligned}$		someplac	staked [2] -	12:1	24, 30:4	[12]-5:23,	28:10, 30:8
	$\begin{aligned} & \text { 24:22 } \\ & \text { sensitive } \end{aligned}$	e [1] - 17:20	$\begin{gathered} 4: 16,28: 16 \\ \text { stakehold } \end{gathered}$	$\begin{gathered} \text { stop [2] - } \\ 4: 18,6: 1 \end{gathered}$	systems$\begin{aligned} & {[2]-11: 22,} \\ & 12: 10 \end{aligned}$	6:11, $6: 13$, $7 \cdot 19$ 8:1,	trying [2]
$\begin{aligned} & \text { 5:4, 28:21 } \\ & \text { RHETT }{ }_{[1]} \end{aligned}$	[2] - 14:13,$14: 17$	sorry [1] -19:11				11:17,	
			stakehold er [1] - 25:11	Storage [1]			tunnel [1] -
$\begin{aligned} & -2: 5 \\ & \text { rights }[4]- \end{aligned}$	series [1] -	sort [7]	stakehold	$\begin{aligned} & -1: 3 \\ & \text { storage }[6] \end{aligned}$		$\begin{aligned} & \text { 13:18, } \\ & \text { 21:20, 25:7, } \end{aligned}$	tunneling
rights [4]- 29:23, $30: 2$,	set [3] -	$\begin{aligned} & 7: 2,10: 24 \\ & 11: 1,13: 1 \end{aligned}$	11:13, 20:5,	$-6: 8,14: 23$	T	$\begin{aligned} & 25: 9,25: 16, \\ & 28: 5 \end{aligned}$	[1] - 13:15
	$7: 8,15: 22$	$\begin{aligned} & 21: 6,24: 5, \\ & 28: 16 \end{aligned}$	$\begin{aligned} & 23: 6,24: 19, \\ & 25: 4.30: 13 \end{aligned}$	$\begin{aligned} & 15: 3,15: 5, \\ & 15: 7,15: 14 \end{aligned}$		Tolivaisa	- 18:6
13:10	$\begin{aligned} & 32: 12 \\ & \text { several [2] } \end{aligned}$	South [2] -	stand [2] -	stored [2] -	$\begin{aligned} & 5: 6,29: 11 \\ & \text { tactical } \end{aligned}$	$\begin{aligned} & {[3]-12: 8,} \\ & 16: 8,29: 15 \end{aligned}$	turbine [2]
ROBERT	- 12:14,	2:2, 2:5	$\begin{aligned} & \text { 11:5, 22:9 } \\ & \text { standpoin } \end{aligned}$	$\begin{gathered} 9: 23,18: 2 \\ \text { Street }[4]- \end{gathered}$			$-7: 7,15: 25$
$\mathbf{S}[1]-2: 7$ Roberts [1]	$\begin{aligned} & \text { 19:4 } \\ & \text { shaft }[4] \text { - } \end{aligned}$			1:7, 2:6,	$-21: 5$	TOLIVAIS	$\begin{gathered} \text { turn [1] - } \\ \text { 25:17 } \end{gathered}$
$\begin{aligned} & \text { Roberts [1] } \\ & -5: 15 \end{aligned}$		18:15	$\mathbf{t}[4]-8: 15$	$1: 7,2: 6$ $2: 8,2: 9$	$\boldsymbol{t a x}$ [4]	$\mathbf{A}[14]-12: 8$	$\begin{aligned} & \text { 25:17 } \\ & \text { turns [1] - } \end{aligned}$
rock	$7: 13,15: 2$	$\begin{array}{r} \text { S(in [1] - } 3: 2 \\ \text { special [1] } \end{array}$	16:21 16:23	$10: 4$	$23: 1$	16:12, 17:1,	$\begin{aligned} & \text { 22:6 } \\ & \text { two [14] } \end{aligned}$
$\begin{gathered} 8: 19,8: 21 \\ \text { rocks [1] - } \end{gathered}$	$\begin{aligned} & \text { shafts }[1] \text { - } \\ & 7: 19 \end{aligned}$	$\begin{gathered} \text { special }{ }_{[1]} \\ -21: 17 \end{gathered}$	16:23 Stanley [2]	$10: 4$ structural	23:13 technolog	$\begin{aligned} & \text { 17:6, 17:18, } \\ & 17: 25, \end{aligned}$	$\begin{array}{r} \text { two [14] - } \\ 6: 13,9: 16, \end{array}$
$\begin{aligned} & \text { 29:21 } \\ & \text { rolled [1] } \end{aligned}$	$\begin{aligned} & 7: 19 \\ & \text { sheet [1] - } \end{aligned}$	species [1]	$\begin{array}{r} -2: 3,5: 21 \\ \text { start }[8]- \end{array}$	[1] - 8:14 studies [5]	$y_{[1]}-9: 1$	$\begin{aligned} & \text { 18:12, } \\ & \text { 18:21, } \end{aligned}$	$\begin{aligned} & 9: 21,13: 18, \\ & 15: 21,16: 1, \end{aligned}$
			4:4, 4:24	- 5:18, 14:6,	[1]	29:1	18:1, 18:6,
			11:19	14:18, 25:6,	tenets [1] -	30:1	18:7, 19:13,
			15:24,	28:5	30:	$30: 22,31: 5$	20:18,
			$\begin{aligned} & \text { 24:10, 25:9, } \\ & 25: 15, \end{aligned}$	$\begin{aligned} & \text { study [7] - } \\ & 16: 10, \end{aligned}$	terms [10] -	TOLIVAIS	$\begin{aligned} & 23: 15,24: 8, \\ & 24: 9 \end{aligned}$
			$\begin{aligned} & 25: 15 \\ & 28: 12 \end{aligned}$	$\begin{aligned} & 16: 10 \\ & 16: 11 \end{aligned}$	10:2, 14:6,		24:9
			started [2]	16:13	14:2	... 12 [1]-3:4	-half-year
			- 4:23, 9:1	16:15, 17:7,	$18: 1$	took [1] -	[1]-23:15
			$\begin{aligned} & \text { starts [1] - } \\ & 25: 1 \end{aligned}$	25:9, $25: 13$ subcontra	18:25	$14: 4$	$\begin{aligned} & \text { type }[1]- \\ & 15: 6 \end{aligned}$
					24:12, 26:5,		
				14	testim	:19, 6:13,	
			29:15, 32:4,	$\text { al [1] }-23: 13$	[1] - 32:6 Thereupo	$7: 25,8: 17$	U.S [2] -

